Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38573577

RESUMO

Fluorene-9-bisphenol (BHPF) is widely used in the manufacture of plastic products and potentially disrupts several physiological processes, but its biological effects on social behavior remain unknown. In this study, we investigated the effects of BHPF exposure on anxiety-like and social behavior in female mice and the potential mechanisms, thereby proposing a potential therapy strategy. We exposed female Balb/c mice to BHPF by oral gavage at different doses (0.5, 50 mg/kg bw/2-day) for 28 days, which were found BHPF (50 mg/kg) exposure affected motor activity in the open field test (OFT) and elevated cross maze (EPM), resulting in anxiety-like behaviors, as well as abnormal social behavioral deficits in the Social Interaction Test (SIT). Analysis of histopathological staining results showed that BHPF exposure caused damage to hippocampal neurons in the CA1/CA3/DG region and decreased Nissl pyramidal neurons in the CA1/CA3 regions of the hippocampus, as well as a decrease in parvalbumin neuron expression. In addition, BHPF exposure upregulated the expression of excitatory and inhibitory (E/I) vesicle transporter genes (Vglut1, Vglut2, VGAT, GAD67, Gabra) and axon growth gene (Dcc) in the mouse hippocampus. Interestingly, behavioral disturbances and E/I balance could be alleviated by exogenous melatonin (15 mg/kg bw/2-day) therapy. Our findings suggest that exogenous melatonin may be a potential therapy with protective potential for ameliorating or preventing BHPF-induced hippocampal neuronal damage and behavioral disturbances. This study provided new insight into the neurotoxicological effects on organisms exposed to endocrine-disrupting chemicals and aroused our vigilance in current environmental safety about chemical use.

2.
Eur J Pharmacol ; 971: 176529, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554931

RESUMO

The increasing side effects of traditional medications used to treat type II diabetes have made research into the development of safer and more effective natural medications necessary. ACT001, a derivative of parthenolide, has been shown to have good anti-inflammatory and antitumor effects; however, its role in diabetes is unclear. The short-chain fatty acid propionate is a common food preservative that has been found to cause disturbances in glucose metabolism in mice and humans. This study aimed to investigate whether sodium propionate could aggravate insulin resistance in obese mice and cause diabetes and to study the alleviative effects and potential mechanisms of action of ACT001 on insulin resistance in diabetic mice. Type II diabetic mice were adminietered sodium propionate combined with a high-fat diet (HFD + propionate) by gavage daily for four weeks. Biochemical analysis showed that ACT001 significantly affected blood glucose concentration in diabetic mice, mainly by downregulating the expression of phosphoenolpyruvate carboxykinase 2 and glucose-6-phosphatase. Meanwhile, the level of fatty acid-binding protein 4 in the liver was significantly decreased. ACT001 has a protective effect on the liver and adipose tissue of mice. In addition, the results of the running wheel experiment indicated that ACT001 alleviated the circadian rhythm disorder caused by insulin resistance to a certain extent. This study revealed the potential mechanism by which ACT001 alleviates insulin resistance and provides ideas for developing natural antidiabetic drugs.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Furanos , Resistência à Insulina , Sesquiterpenos , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Propionatos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos C57BL , Insulina/metabolismo
3.
Sensors (Basel) ; 24(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38544116

RESUMO

Currently, robots are playing significant roles in industry [...].

4.
Sensors (Basel) ; 23(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836974

RESUMO

A patch clamp is the "gold standard" method for studying ion-channel biophysics and pharmacology. Due to the complexity of the operation and the heavy reliance on experimenter experience, more and more researchers are focusing on patch-clamp automation. The existing automated patch-clamp system focuses on the process of completing the experiment; the detection method in each step is relatively simple, and the robustness of the complex brain film environment is lacking, which will increase the detection error in the microscopic environment, affecting the success rate of the automated patch clamp. To address these problems, we propose a method that is suitable for the contact between pipette tips and neuronal cells in automated patch-clamp systems. It mainly includes two key steps: precise positioning of pipettes and contact judgment. First, to obtain the precise coordinates of the tip of the pipette, we use the Mixture of Gaussian (MOG) algorithm for motion detection to focus on the tip area under the microscope. We use the object detection model to eliminate the encirclement frame of the pipette tip to reduce the influence of different shaped tips, and then use the sweeping line algorithm to accurately locate the pipette tip. We also use the object detection model to obtain a three-dimensional bounding frame of neuronal cells. When the microscope focuses on the maximum plane of the cell, which is the height in the middle of the enclosing frame, we detect the focus of the tip of the pipette to determine whether the contact between the tip and the cell is successful, because the cell and the pipette will be at the same height at this time. We propose a multitasking network CU-net that can judge the focus of pipette tips in complex contexts. Finally, we design an automated contact sensing process in combination with resistance constraints and apply it to our automated patch-clamp system. The experimental results show that our method can increase the success rate of pipette contact with cells in patch-clamp experiments.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Encéfalo/fisiologia , Automação , Neurônios/fisiologia
5.
Sensors (Basel) ; 23(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37430885

RESUMO

Intracellular pressure, a key physical parameter of the intracellular environment, has been found to regulate multiple cell physiological activities and impact cell micromanipulation results. The intracellular pressure may reveal the mechanism of these cells' physiological activities or improve the micro-manipulation accuracy for cells. The involvement of specialized and expensive devices and the significant damage to cell viability that the current intracellular pressure measurement methods cause significantly limit their wide applications. This paper proposes a robotic intracellular pressure measurement method using a traditional micropipette electrode system setup. First, the measured resistance of the micropipette inside the culture medium is modeled to analyze its variation trend when the pressure inside the micropipette increases. Then, the concentration of KCl solution filled inside the micropipette electrode that is suitable for intracellular pressure measurement is determined according to the tested electrode resistance-pressure relationship; 1 mol/L KCl solution is our final choice. Further, the measurement resistance of the micropipette electrode inside the cell is modeled to measure the intracellular pressure through the difference in key pressure before and after the release of the intracellular pressure. Based on the above work, a robotic measurement procedure of the intracellular pressure is established based on a traditional micropipette electrode system. The experimental results on porcine oocytes demonstrate that the proposed method can operate on cells at an average speed of 20~40 cells/day with measurement efficiency comparable to the related work. The average repeated error of the relationship between the measured electrode resistance and the pressure inside the micropipette electrode is less than 5%, and no observable intracellular pressure leakage was found during the measurement process, both guaranteeing the measurement accuracy of intracellular pressure. The measured results of the porcine oocytes are in accordance with those reported in related work. Moreover, a 90% survival rate of operated oocytes was obtained after measurement, proving limited damage to cell viability. Our method does not rely on expensive instruments and is conducive to promotion in daily laboratories.


Assuntos
Procedimentos Cirúrgicos Robóticos , Animais , Suínos , Meios de Cultura , Sobrevivência Celular , Eletrodos , Laboratórios
6.
Microsc Res Tech ; 86(2): 181-192, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36278826

RESUMO

The evaluation of oocyte viability in the laboratory is limited to the morphological assessment by naked eyes, but the realization that most normal-appearing oocytes may conceal abnormalities prompts the search for automated approaches that can detect the abnormalities imperceptible to naked eyes. In this study, we developed an image processing pipeline applicable to bright-field microscope images to quantify the causal relationship between the quantitative imaging features and the developmental potential of oocytes. We acquired 19 imaging features of approximately 700 oocytes and determined two imaging subtypes, namely viable and nonviable subtypes that correlated closely with a viability fluorescence indicator and cleavage rates. The causal relationship between these imaging features and oocyte viability was derived from a viability-oriented Bayesian network that was developed based on the Bayesian information criterion and Tabu search. Our experimental results revealed that entropy with mean Gray Level Co-Occurrence Matrix energy describing the uniformity and texture roughness of cytoplasm were salient features for the automated selection of promising oocytes that exhibited excellent developmental potential.


Assuntos
Oócitos , Teorema de Bayes , Citoplasma
7.
Acta Biomater ; 157: 297-309, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543279

RESUMO

Studies on the interaction between cells and micromanipulation tools are necessary to optimize the procedures and improve the developmental potential of cells. The molecular dynamics simulation is not possible for such a large-scale simulation, and the spring-damped viscoelastic models and the constitutive equations of the continuum are usually adopted to model the cells as a whole without consideration of the different properties presented by the heterogeneous subcellular components. In this study, we utilized coarse-grained modeling to develop a subcellular model of suspension cell dynamics and a model of a holding micropipette for the fixation of a suspension cell, and designed a large-scale, accurate mesoscopic simulation environment for specific cell micromanipulation. We established a triangular mesh cell membrane and a uniformly distributed, non-intersecting cytoskeleton network and added polymerization/depolymerization processes to connect the cytoskeleton chains with the membrane and cross-linking proteins. In the cell aspiration model, we adopted the profile of the reversed Poiseuille flow to calibrate the viscosity of the fluid and set the bounce-back condition and the appropriate solid-fluid force coefficient to realize non-slip flow at the boundary. The rheological properties of the cells during micropipette aspiration were further analyzed in the simulation by varying parameters such as the inner diameter of the micropipette, negative pressure, and maximum bond length. The model well reproduced the experimentally observed cell deformation phenomenon at low and high pressures. The dynamic response of the cell elongation observed from the simulation was consistent with that obtained from the analysis of the experimental data collected from a custom-designed micromanipulation system. STATEMENT OF SIGNIFICANCE: In this study, we extended the coarse-grained modeling of cells by developing a relatively large-scale micromanipulation environment consisting of a subcellular cell dynamics model and a fluid flow model for cell aspiration. We simulated cytoskeleton filaments that were uniformly distributed in space via applying Harmonic energy to model cytoskeleton with a high level of fidelity. The shortcoming of the soft repulsion in the solid-fluid interaction in the current simulation technique was solved by implementing the bounce-back boundary and the condition that the total force imposed by the wall particles on the fluid particles was equal to the pressure of the fluid. This work paved the way for understanding the mechanical properties of cells and improving the biological efficacy of micromanipulation.


Assuntos
Citoesqueleto , Elasticidade , Simulação por Computador , Membrana Celular/fisiologia , Reologia
8.
Micromachines (Basel) ; 13(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35888904

RESUMO

The early steps of embryogenesis are controlled exclusively by the quality of oocyte that linked closely to its mechanical properties. The mechanical properties of an oocyte were commonly characterized by assuming it was homogeneous such that the result deviated significantly from the true fact that it was composed of subcellular components. In this work, we accessed and characterized the subcellular components of the oocytes and developed a layered high-fidelity finite element model for describing the viscoelastic responses of an oocyte under loading. The zona pellucida (ZP) and cytoplasm were isolated from an oocyte using an in-house robotic micromanipulation platform and placed on AFM to separately characterizing their mechanical profiling by analyzing the creep behavior with the force clamping technique. The spring and damping parameters of a Kelvin-Voigt model were derived by fitting the creeping curve to the model, which were used to define the shear relaxation modulus and relaxation time of ZP or cytoplasm in the ZP and cytoplasm model. In the micropipette aspiration experiment, the model was accurate sufficiently to deliver the time-varying aspiration depth of the oocytes under the step negative pressure of a micropipette. In the micropipette microinjection experiment, the model accurately described the intracellular strain introduced by the penetration. The developed oocyte FEM model has implications for further investigating the viscoelastic responses of the oocytes under different loading settings.

9.
Microsyst Nanoeng ; 8: 26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299653

RESUMO

Emerging heart-on-a-chip platforms are promising approaches to establish cardiac cell/tissue models in vitro for research on cardiac physiology, disease modeling and drug cardiotoxicity as well as for therapeutic discovery. Challenges still exist in obtaining the complete capability of in situ sensing to fully evaluate the complex functional properties of cardiac cell/tissue models. Changes to contractile strength (contractility) and beating regularity (rhythm) are particularly important to generate accurate, predictive models. Developing new platforms and technologies to assess the contractile functions of in vitro cardiac models is essential to provide information on cell/tissue physiologies, drug-induced inotropic responses, and the mechanisms of cardiac diseases. In this review, we discuss recent advances in biosensing platforms for the measurement of contractile functions of in vitro cardiac models, including single cardiomyocytes, 2D monolayers of cardiomyocytes, and 3D cardiac tissues. The characteristics and performance of current platforms are reviewed in terms of sensing principles, measured parameters, performance, cell sources, cell/tissue model configurations, advantages, and limitations. In addition, we highlight applications of these platforms and relevant discoveries in fundamental investigations, drug testing, and disease modeling. Furthermore, challenges and future outlooks of heart-on-a-chip platforms for in vitro measurement of cardiac functional properties are discussed.

10.
Front Neurorobot ; 15: 563682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194309

RESUMO

The pattern abnormalities of dendritic spine, tiny protrusions on neuron dendrites, have been found related to multiple nervous system diseases, such as Parkinson's disease and schizophrenia. The determination of the factors affecting spine patterns is of vital importance to explore the pathogenesis of these diseases, and further, search the treatment method for them. Although the study of dendritic spines is a hot topic in neuroscience in recent years, there is still a lack of systematic study on the formation mechanism of its pattern. This paper provided a reinterpretation of reaction-diffusion model to simulate the formation process of dendritic spine, and further, study the factors affecting spine patterns. First, all four classic shapes of spines, mushroom-type, stubby-type, thin-type, and branched-type were reproduced using the model. We found that the consumption rate of substrates by the cytoskeleton is a key factor to regulate spine shape. Moreover, we found that the density of spines can be regulated by the amount of an exogenous activator and inhibitor, which is in accordance with the anatomical results found in hippocampal CA1 in SD rats with glioma. Further, we analyzed the inner mechanism of the above model parameters regulating the dendritic spine pattern through Turing instability analysis and drew a conclusion that an exogenous inhibitor and activator changes Turing wavelength through which to regulate spine densities. Finally, we discussed the deep regulation mechanisms of several reported regulators of dendritic spine shape and densities based on our simulation results. Our work might evoke attention to the mathematic model-based pathogenesis research for neuron diseases which are related to the dendritic spine pattern abnormalities and spark inspiration in the treatment research for these diseases.

11.
Front Public Health ; 9: 648360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968885

RESUMO

The clinical spectrum of COVID-19 pneumonia is varied. Thus, it is important to identify risk factors at an early stage for predicting deterioration that require transferring the patients to ICU. A retrospective multicenter study was conducted on COVID-19 patients admitted to designated hospitals in China from Jan 17, 2020, to Feb 17, 2020. Clinical presentation, laboratory data, and quantitative CT parameters were also collected. The result showed that increasing risks of ICU admission were associated with age > 60 years (odds ratio [OR], 12.72; 95% confidence interval [CI], 2.42-24.61; P = 0.032), coexisting conditions (OR, 5.55; 95% CI, 1.59-19.38; P = 0.007) and CT derived total opacity percentage (TOP) (OR, 8.0; 95% CI, 1.45-39.29; P = 0.016). In conclusion, older age, coexisting conditions, larger TOP at the time of hospital admission are associated with ICU admission in patients with COVID-19 pneumonia. Early monitoring the progression of the disease and implementing appropriate therapies are warranted.


Assuntos
COVID-19 , Idoso , China/epidemiologia , Humanos , Unidades de Terapia Intensiva , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2 , Tomografia Computadorizada por Raios X
12.
Talanta ; 226: 122097, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676654

RESUMO

Standard two/three dimensional (2D/3D)-cell culture platforms have facilitated the understanding of the communications between various cell types and their microenvironments. However, they are still limited in recapitulating the complex functionalities in vivo, such as tissue formation, tissue-tissue interface, and mechanical/biochemical microenvironments of tissues and organs. Intestine-on-a-chip platforms offer a new way to mimic intestinal behaviors and functionalities by constructing in vitro intestinal models in microfluidic devices. This review summarizes the advances and limitations of the state-of-the-art 2D/3D-cell culture platforms, animal models, intestine chips, and the combined multi-organ chips related with intestines. Their applications to studying intestinal functions, drug testing, and disease modeling are introduced. Different intestinal cell sources are compared in terms of gene expression abilities and the recapitulated intestinal morphologies. Among these cells, cells isolated form human intestinal tissues and derived from pluripotent stem cells appear to be more suitable for in vitro reconstruction of intestinal organs. Key challenges of current intestine-on-a-chip platforms and future directions are also discussed.


Assuntos
Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip , Animais , Humanos , Intestinos
13.
Biosens Bioelectron ; 175: 112875, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33303322

RESUMO

The use of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as an in vitro model of the heart is limited by their structurally and functionally immature phenotypes. During heart development, mechanical stimuli from in vivo microenvironments are known to regulate cardiomyocyte gene expression and maturation. Accordingly, protocols for culturing iPSC-CMs have recently incorporated mechanical or electromechanical stimulation to induce cellular maturation in vitro; however, the response of iPSC-CMs to different mechanical strain magnitudes is unknown, and existing techniques lack the capability to dynamically measure changes to iPSC-CM contractility in situ as maturation progresses. We developed a microdevice platform which applies cyclical strains of varying magnitudes (5%, 10%, 15% and 20%) to a monolayer of iPSC-CMs, coincidentally measuring contractile stress during mechanical stimulation using fluorescent nanobeads embedded in the microdevice's suspended membrane. Cyclic strain was found to induce circumferential cell alignment on the actuated membranes. In situ contractility measurements revealed that cyclic stimulation gradually increased cardiomyocyte contractility during a 10-day culture period. The contractile stress of iPSC-CM monolayers was found to increase with a higher strain magnitude and plateaued at 15% strain. Cardiomyocyte contractility positively correlated with the elongation of sarcomeres and an increased expression of ß-myosin heavy chain (MYH7) in a strain magnitude-dependent manner, illustrating how mechanical stress can be optimized for the phenotypic and proteomic maturation of the cells. iPSC-CMs with improved maturity have the potential to create a more accurate heart model in vitro for applications in disease modeling and therapeutic discovery.


Assuntos
Técnicas Biossensoriais , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Humanos , Miócitos Cardíacos , Proteômica , Sarcômeros
14.
IEEE Trans Biomed Eng ; 68(8): 2348-2359, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33156778

RESUMO

OBJECTIVE: The invisibility of domestic oocyte nucleus in bright field currently forces operators to blindly aspirate nucleus out in oocyte enucleation, usually causing large cytoplasm losses and poor developmental competences of cloned embryos. Although fluorescent labeling of nucleus allows for nucleus localization, the involved photobleaching problems and barriers to the execution of enucleation process limit its online-application in oocyte enucleation. This paper reports a novel label-free oocyte enucleation method for precise removal of the nucleus with less cytoplasm loss. METHODS: The relative positions between the injection pipette and nucleus for complete removal of nucleus with less cytoplasm loss were determined through a finite element modeling of nucleus aspiration. To position injection pipette to the above positions relative to nucleus, the appropriate oocyte orientation and trajectory of injection pipette inside oocyte were derived according to the offline-calibrated 3-D distribution of nucleus and the simulated dynamic drift of nucleus that occurs as injection pipette is maneuvered inside oocyte. Finally, a robotic label-free precise enucleation procedure was established. RESULTS: The experimental results on more than 1000 porcine oocytes proved that this system is capable of reducing cytoplasm loss by 60% at the same level of enucleation success rate and almost doubling the cleavage rate of clone embryos in comparison to blind aspiration method. CONCLUSIONS: The results prove that our method significantly improves the developmental competence of cloned embryos in comparison to manual enucleation method. SIGNIFICANCE: Our method is expected to improve the extremely low success rate of animal cloning in the future.


Assuntos
Clonagem de Organismos , Procedimentos Cirúrgicos Robóticos , Animais , Núcleo Celular , Técnicas de Transferência Nuclear , Oócitos , Suínos
15.
Biosens Bioelectron ; 167: 112468, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829174

RESUMO

Cardiac conduction is an important function of the heart. To date, accurate measurement of conduction velocity (CV) in vitro is hindered by the low spatial resolution and poor signal-to-noise ratio of microelectrode arrays (MEAs), or the cytotoxicity and end-point analysis of fluorescence optical imaging. Here, we have developed a new label-free method based on defocused brightfield imaging to quantify CV by analyzing centroid displacements and contraction trajectories of each cardiomyocyte in a monolayer of human stem cell-derived cardiomyocytes (iPSC-CMs). Our data revealed that the time delay between intracellular calcium release and the initiation of cell contraction is highly consistent across cardiomyocytes; however, the duration a cell takes to reach its maximum beating magnitude varies significantly, proving that the time delay in excitation-contraction coupling is largely constant in iPSC-CMs. Standard calcium imaging of the same iPSC-CM populations (~106 cells) was conducted for comparison with our label-free method. The results confirmed that our label-free method was capable of achieving highly accurate CV mapping (17.64 ± 0.89 cm/s vs. 17.95 ± 2.29 cm/s, p-value>0.1). Additionally, our method effectively revealed various shapes in cell beating pattern. We also performed label-free CV mapping on disease-specific iPSC-CM monolayers with plakophilin-2 (PKP2) knockdown, which effectively quantified their low CV values and further validated the arrhythmogenic role of PKP2 mutation in arrhythmogenic right ventricular cardiomyopathy (ARVC) through the disruption of cardiac conduction. The label-free method offers a cytotoxic-free technique for long-term measurement of dynamic beating trajectories, beating propagation and conduction velocities of cardiomyocyte monolayers.


Assuntos
Técnicas Biossensoriais , Células-Tronco Pluripotentes Induzidas , Arritmias Cardíacas , Junções Comunicantes , Humanos , Miócitos Cardíacos
16.
Biosens Bioelectron ; 166: 112399, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32692665

RESUMO

Heart failure fundamentally results from loss of cardio myocyte contractility. Developing new methods that quantify the contractile stress of the human cardiomyocyte would facilitate the study of the molecular mechanism of heart failure and advance therapy development, to improve the current five year survival for these patients. The measurement of cellular electrical impedance measurement was recently applied to monitor cardiomyocyte beating rate and rhythm, for the study at cellular maturation, and for drug screening. However, due to the lack of a quantified relationship between the impedance signal and contractile stress, change of cardiomyocyte contractile stress cannot genuinely be quantified from impedance measurements. Here, we report the first quantitative relationship between contractile stress and impedance, which enables the accurate prediction of cardiomyocyte contractility using impedance signals. Through simultaneous measurement of beating human iPSC-cardiomyocytes using impedance spectroscopy and atomic force microscopy, a power-law relationship between impedance and contractile stress was established with a confidence level of 95%. The quantitative relationship was validated using pharmacology known to alter cardiomyocyte contractility and beating (verapamil, using clinically relevant concentrations of 0.05 µM, 0.10 µM, and 0.15 µM). The contractile stress values as measured by AFM were 9.04 ± 0.14 kPa (0.05 µM), 7.72 ± 0.11 kPa (0.10 µM) and 6.23 ± 0.17 kPa (0.15 µM), and as predicted by impedance using the derived power-law relationship were 9.39 kPa, 7.76 kPa, and 6.05 kPa with a relative error of 3.73%. Our power-law relationship is the first to describe a quantitative correlation between contractile stress and impedance, broadening the application of electrical impedance measurement for characterizing complex cardiac functions (beating rate, beating rhythm and contractile stress).


Assuntos
Técnicas Biossensoriais , Células-Tronco Pluripotentes Induzidas , Impedância Elétrica , Humanos , Contração Miocárdica , Miócitos Cardíacos
17.
Micromachines (Basel) ; 10(5)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137867

RESUMO

As there are significant variations of cell elasticity among individual cells, measuring the elasticity of batch cells is required for obtaining statistical results of cell elasticity. At present, the micropipette aspiration (MA) technique is the most widely used cell elasticity measurement method. Due to a lack of effective cell storage and delivery methods, the existing manual and robotic MA methods are only capable of measuring a single cell at a time, making the MA of batch cells low efficiency. To address this problem, we developed a robotic MA system capable of storing multiple cells with a feeder micropipette (FM), picking up cells one-by-one to measure their elasticity with a measurement micropipette (MM). This system involved the following key techniques: Maximum permissible tilt angle of MM and FM determination, automated cell adhesion detection and cell adhesion break, and automated cell aspiration. The experimental results demonstrated that our system was able to continuously measure more than 20 cells with a manipulation speed quadrupled in comparison to existing methods. With the batch cell measurement ability, cell elasticity of pig ovum cultured in different environmental conditions was measured to find optimized culturing protocols for oocyte maturation.

18.
Eur Heart J ; 39(44): 3932-3944, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30239670

RESUMO

Aims: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by right ventricular myocardial replacement and life-threatening ventricular arrhythmias. Desmosomal gene mutations are sometimes identified, but clinical and genetic diagnosis remains challenging. Desmosomal skin disorders can be caused by desmosomal gene mutations or autoantibodies. We sought to determine if anti-desmosome antibodies are present in subjects with ARVC. Methods and results: We evaluated ARVC subjects and controls for antibodies to cardiac desmosomal cadherin proteins. Desmoglein-2 (DSG2), desmocollin-2, and N-cadherin proteins on western blots were exposed to sera, in primary and validation cohorts of subjects and controls, as well as the naturally occurring Boxer dog model of ARVC. We identified anti-DSG2 antibodies in 12/12 and 25/25 definite ARVC cohorts and 7/8 borderline subjects. Antibody was absent in 11/12, faint in 1/12, and absent in 20/20 of two control cohorts. Anti-DSG2 antibodies were present in 10/10 Boxer dogs with ARVC, and absent in 18/18 without. In humans, the level of anti-DSG2 antibodies correlated with the burden of premature ventricular contractions (r = 0.70), and antibodies caused gap junction dysfunction, a common feature of ARVC, in vitro. Anti-DSG2 antibodies were present in ARVC subjects regardless of whether an underlying mutation was identified, or which mutation was present. A disease-specific DSG2 epitope was identified. Conclusion: Anti-DSG2 antibodies are a sensitive and specific biomarker for ARVC. The development of autoimmunity as a result of target-related mutations is unique. Anti-DSG2 antibodies likely explain the cardiac inflammation that is frequently identified in ARVC and may represent a new therapeutic target.


Assuntos
Displasia Arritmogênica Ventricular Direita/imunologia , Autoanticorpos/sangue , Desmogleína 2/imunologia , Adolescente , Adulto , Idoso , Animais , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/genética , Biomarcadores/sangue , Criança , Modelos Animais de Doenças , Cães , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
19.
Langmuir ; 34(35): 10287-10292, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30095920

RESUMO

Microinjection is a widely used technique for introducing exogenous materials into cells. Many applications of microinjection, such as gene editing and drug testing, rely on the accurate control of the deposition volume. However, the deposition volume in microinjection is presently calibrated in an open medium without considering the cell inner pressure effect, which we experimentally show in this paper that it can induce an error as large as 30% between the actual deposition volume and the set volume. In this work, the relationship between the cell inner pressure and the deposition volume was analytically modeled and experimentally validated. On the basis of the developed model, the cell inner pressure of a given cell type can be well estimated from the injection pressure and the resulting deposition volume. The quantitated cell inner pressure is then used to reduce the error between the set volume and the actual deposition volume. Experiments conducted on human bladder cancer cells (T24 and RT4) showed that T24 cells have a higher inner pressure than RT4 cells (405 ± 45 Pa vs 341 ± 34 Pa), and after compensating for the cell inner pressure, the error between the intended set volume and the actual deposition volume into a cell became less than 3%.

20.
ACS Appl Mater Interfaces ; 10(25): 21173-21183, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29874032

RESUMO

The heart completes a complex set of tasks, including the initiation or propagation of an electrical signal with regularity (proper heart rate and rhythm) and generating sufficient force of contraction (contractility). Probing mechanisms of heart diseases and quantifying drug efficacies demand a platform that is capable of continuous operation inside a cell incubator for long-term measurement of cardiomyocyte (CM) monolayers. Here, we report a microdevice array that is capable of performing continuous, long-term (14 days) measurement of contractility, beating rate, and beating rhythm in a monolayer of human-induced pluripotent stem cell-CMs (hiPSC-CMs). The device consists of a deformable membrane with embedded carbon nanotube (CNT)-based strain sensors. Contraction of the hiPSC-CMs seeded on the membrane induces electrical resistance change of the CNT strain sensor. Continuously reading the sensor signals revealed that hiPSC-CMs started to beat from day 2 and plateaued on day 5. Average contractile stress generated by a monolayer of hiPSC-CMs was determined to be 2.34 ± 0.041 kPa with a beating rate of 1.17 ± 0.068 Hz. The device arrays were also used to perform comprehensive measurement of the beating rate, rhythm, and contractility of the hiPSC-CMs and quantify the cell responses to different concentrations of agonists and antagonists, which altered the average contractile stress to the range of 1.15 ± 0.13 to 3.96 ± 0.53 kPa. The continuous measurement capability of the device arrays also enabled the generation of Poincaré plots for revealing subtle changes in the beating rhythm of hiPSC-CMs under different drug treatments.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Cultivadas , Humanos , Incubadoras , Fenômenos Mecânicos , Contração Miocárdica , Miócitos Cardíacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...